Propiedades funcionales de productos tradicionales congelados y secados al sol de oca (Oxalis tuberosa Molina) y olluco (Ullucus tuberosus Caldas): Una revisión

Autores/as

  • Roberto Carlos Chuquilín Goicochea Universidad Nacional de Huancavelica, Perú
  • Mónica Carolim Martínez Laurente Universidad Nacional de Huancavelica, Perú
  • Jesús Teodoro Rodrigo-Chumbes Universidad Nacional de Huancavelica, Perú

DOI:

https://doi.org/10.37073/puriq.2.3.100

Palabras clave:

Capacidad antioxidante, antocianinas, betalaininas, ocatina, almidón, kaya, chullcce

Resumen

El objetivo fue comprender la importancia de dos tubérculos andinos orgánicos como Oxalis tuberosa Molina y Ullucus tuberosus Caldas, en cuanto a sus componentes benéficos para la salud humana, así como darle un valor agregado mediante una técnica ancestral, llamada comúnmente “chuño”, conocidos como caya y chullce en la región Huancavelica. Se revisaron bases de datos Science direct, Taylor & Francis, Wiley, PubMed, Scielo y Alicia, con una antigüedad de 20 años. Los resultados más relevantes se sistematizaron en tablas y se analizaron para resaltar las cualidades que ambos tubérculos tienen como producto fresco y, las posibilidades que puedan tener al convertirlos en productos agroindustriales que retienen sus propiedades funcionales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roberto Carlos Chuquilín Goicochea, Universidad Nacional de Huancavelica, Perú

Mónica Carolim Martínez Laurente, Universidad Nacional de Huancavelica, Perú

Jesús Teodoro Rodrigo-Chumbes, Universidad Nacional de Huancavelica, Perú

Citas

Acurio Arcos, L. P., & Conrado Mora, K. M. (2018). Determinación de propiedades térmicas de oca (Oxalis tuberosa), jícama (Smallanthus sonchifolius), mashua (Tropaeolum tuberosum) y camote (Ipomoea batatas) (Universidad Técnica de Ambato). Recuperado de https://repositorio.uta.edu.ec/handle/123456789/29060

Albihn, P. B. E., & Savage, G. P. (2001). The bioavailability of oxalate from oca (Oxalis tuberosa). Journal of Urology, 166(2), 420–422. https://doi.org/10.1016/S0022-5347(05)65956-3

Alcalde-Eon, C., Saavedra, G., Pascual-Teresa, S. De, & Rivas-Gonzalo, J. C. (2004). Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers. Journal of Chromatography A, 1054(1–2), 211–215. https://doi.org/10.1016/j.chroma.2004.08.074

Bimbo, F., Bonanno, A., Nocella, G., Viscecchia, R., Nardone, G., De Devitiis, B., & Carlucci, D. (2017, June 1). Consumers’ acceptance and preferences for nutrition-modified and functional dairy products: A systematic review. Appetite, Vol. 113, pp. 141–154. https://doi.org/10.1016/j.appet.2017.02.031

Busch, J., Sangketkit, C., Savage, G., Martin, R., Halloy, S., & Deo, B. (2000). Nutritional analysis and sensory evaluation of ulluco (Ullucus tuberosus Loz) grown in New Zealand. Journal of the Science of Food and Agriculture, 80(15), 2232–2240. Retrieved from https://www.scopus.com/record/display.uri?eid=2-s2.0-0034523209&origin=inward

Campos, D., Chirinos, R., Gálvez Ranilla, L., & Pedreschi, R. (2018). Bioactive Potential of Andean Fruits, Seeds, and Tubers. In Advances in Food and Nutrition Research (Vol. 84, pp. 287–343). https://doi.org/10.1016/bs.afnr.2017.12.005

Campos, D., Noratto, G., Chirinos, R., Arbizu, C., Roca, W., & Cisneros-Zevallos, L. (2006). Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). Journal of the Science of Food and Agriculture, 86(10), 1481–1488. https://doi.org/10.1002/jsfa.2529

Carvalho, A. de O., & Gomes, V. M. (2009, May). Plant defensins-Prospects for the biological functions and biotechnological properties. Peptides, Vol. 30, pp. 1007–1020. https://doi.org/10.1016/j.peptides.2009.01.018

Cecasem. (2010). Elaboración de kaya de oca. Recuperado de https://www.youtube.com/watch?v=skB83XVm5so

Cejudo-Bastante, M. J., Hurtado, N., Mosquera, N., & Heredia, F. J. (2014). Potential use of new Colombian sources of betalains. Color stability of ulluco (Ullucus tuberosus) extracts under different pH and thermal conditions. Food Research International, 64, 465–471. https://doi.org/10.1016/j.foodres.2014.07.036

Chen, Y. F., Singh, J., Midgley, J., & Archer, R. (2020). Influence of time-temperature cycles on potato starch retrogradation in tuber and starch digestion in vitro. Food Hydrocolloids, 98, 105240. https://doi.org/10.1016/j.foodhyd.2019.105240

Chirinos, R., Betalleluz-Pallardel, I., Huamán, A., Arbizu, C., Pedreschi, R., & Campos, D. (2009). HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry, 113(4), 1243–1251. https://doi.org/10.1016/j.foodchem.2008.08.015

Chirinos, R., Pedreschi, R., Rogez, H., Larondelle, Y., & Campos, D. (2013). Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Industrial Crops and Products, 47, 145–152. https://doi.org/10.1016/j.indcrop.2013.02.025

Cho, E. J., Yokozawa, T., Rhyu, D. Y., Kim, S. C., Shibahara, N., & Park, J. C. (2003). Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine, 10(6–7), 544–551. https://doi.org/10.1078/094471103322331520

Christiansen, J. (1977). The utilization of bitter potatoes to improve food production in high altitude of the tropics. Cornell University.

Cortés, M., Herrera, E., & Rodríguez, E. (2015). Optimización experimental del proceso de liofilización de uchuva adicionada con componentes activos por impregnación al vacío. Vitae, 22(1), 47–56. Recuperado de https://www.redalyc.org/pdf/1698/169840731006.pdf

de Haan, S., Burgos, G., Arcos, J., Ccanto, R., Scurrah, M., Salas, E., & Bonierbale, M. (2010). Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Economic Botany, 64(3), 217–234. https://doi.org/10.1007/s12231-010-9128-x

Dini, A., Rastrelli, L., Saturnino, P., & Schettino, O. (1991). [Minor components in food plants--II. Triterpenoid saponins from Ullucus tuberosus]. Bollettino della Societa italiana di biologia sperimentale, 67(12), 1059–1065.

Espín, S, Brito, B., Villacrés, E., Rubio, A., Nieto, C., & Grijalva, J. (2001). Composición química, valor nutricional y usos potenciales de siete especies de raíces y tubérculos andinos. Acta Científica Ecuatoriana, 7(1), 49.

Espín, Susana, Villacrés, E., & Brito, B. (2014). Caracterización Físico-Química, Nutricional y Funcional de Raíces y Tubérculos Andinos. In Raíces y tubérculos andinos (pp. 13–23). Recuperado de http://cipotato.org/wp-content/uploads/2014/06/RTAs_Ecuador_04.pdf

Euromonitor. (2016). New Approaches to Wellness and Global Market Impact. Euromonitor Internacional. Recuperado de https://www.euromonitor.com/new-approaches-to-wellness-and-global-market-impact/report

Flores, T., Alape-Girón, A., Flores-Díaz, M., & Flores, H. E. (2002). Ocatin. A novel tuber storage protein from the Andean tuber crop oca with antibacterial and antifungal activities. Plant Physiology, 128(4), 1291–1302. https://doi.org/10.1104/pp.010541

Gandía-Herrero, F., Escribano, J., & García-Carmona, F. (2016). Biological Activities of Plant Pigments Betalains. Critical Reviews in Food Science and Nutrition, 56(6), 937–945. https://doi.org/10.1080/10408398.2012.740103

Giusti, M., Polit, M. F., Ayvaz, H., Tay, D., & Manrique, I. (2014). Characterization and Quantitation of Anthocyanins and Other Phenolics in Native Andean Potatoes. Journal of Agricultural and Food Chemistry, 62(19), 4408–4416. https://doi.org/10.1021/jf500655n

Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., & Trugo, L. C. (1989). Chemical composition and protein quality of some local Andean food sources. Food Chemistry, 34(1), 25–34. https://doi.org/10.1016/0308-8146(89)90030-7

Jung, M. J., Chung, H. Y., Choi, J. H., & Choi, J. S. (2003). Antioxidant Principles from the Needles of Red Pine, Pinus densiflora. Phytotherapy Research, 17(9), 1064–1068. https://doi.org/10.1002/ptr.1302

Keleman Saxena, A., Cadima Fuentes, X., Gonzales Herbas, R., & Humphries, D. L. (2016). Indigenous Food Systems and Climate Change: Impacts of Climatic Shifts on the Production and Processing of Native and Traditional Crops in the Bolivian Andes. Frontiers in Public Health, 4(March), 1–16. https://doi.org/10.3389/fpubh.2016.00020

Kim, H. R., Choi, S. J., Choi, H. D., Park, C. S., & Moon, T. W. (2020). Amylosucrase-modified waxy potato starches recrystallized with amylose: The role of amylopectin chain length in formation of low-digestible fractions. Food Chemistry, 318, 126490. https://doi.org/10.1016/j.foodchem.2020.126490

King, R. (1988). Mejoramiento de cultivos andinos, papa amarga, olluco, mashua y oca. Programa Interinstitucional de Papa.

Kraus, A., Annunziata, A., & Vecchio, R. (2017). Sociodemographic Factors Differentiating the Consumer and the Motivations for Functional Food Consumption. Journal of the American College of Nutrition, 36(2), 116–126. https://doi.org/10.1080/07315724.2016.1228489

Leterme, P., Buldgen, A., Estrada, F., & Londoño, A. M. (2006). Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chemistry, 95(4), 644–652. https://doi.org/10.1016/j.foodchem.2005.02.003

Manach, C., Milenkovic, D., Van de Wiele, T., Rodriguez-Mateos, A., de Roos, B., Garcia-Conesa, M. T., … Morand, C. (2017, June 1). Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Molecular Nutrition and Food Research, Vol. 61. https://doi.org/10.1002/mnfr.201600557

Márquez Mendoza, H. C. (2019). Composición nutricional y de mucílago de tres variedades de olluco (Ullucus tuberosus Loz.) para la obtención de chuño de olluco en el distrito de Santo Tomás - Cusco. Recuperado de http://repositorio.unsaac.edu.pe/bitstream/handle/UNSAAC/3694/253T20190059_TC.pdf?sequence=1&isAllowed=y

Mejía Lotero, F. M., Salcedo Gil, J. E., Vargas Londoño, S., Serna Jiménez, J. A., Torres Valenzuela, L. S., Mejía Lotero, F. M., … Torres Valenzuela, L. S. (2018). Capacidad antioxidante y antimicrobiana de tubérculos andinos (Tropaeolum tuberosum y Ullucus tuberosus). Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 449–456. https://doi.org/10.31910/rudca.v21.n2.2018.1083

Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018, August 1). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, Vol. 22, pp. 81–87. https://doi.org/10.1016/j.cofs.2018.02.003

Morillo, A. C., Morillo, Y., & Leguizamo, M. F. (2019). Caracterización morfológica y molecular de Oxalis tuberosa Mol. en el departamento de Boyacá. Rev. Colomb. Biotecnol, 21(1), 18–28. https://doi.org/10.15446/rev.colomb.biote.v21n1.57356

Ng, T. B., Liu, F., Lu, Y., Cheng, C. H. K., & Wang, Z. (2003). Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 136(2), 109–115. https://doi.org/10.1016/S1532-0456(03)00170-4

Pacheco, M. T., Escribano-Bailón, M. T., Moreno, F. J., Villamiel, M., & Dueñas, M. (2019). Determination by HPLC-DAD-ESI/MSn of phenolic compounds in Andean tubers grown in Ecuador. Journal of Food Composition and Analysis, 84, 103258. https://doi.org/10.1016/j.jfca.2019.103258

Pacheco, M. T., Hernández-Hernández, O., Moreno, F. J., & Villamiel, M. (2020). Andean tubers grown in Ecuador: New sources of functional ingredients. Food Bioscience, 35, 100601. https://doi.org/10.1016/j.fbio.2020.100601

Padayachee, A., Day, L., Howell, K., & Gidley, M. J. (2017). Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 57(1), 59–81. https://doi.org/10.1080/10408398.2013.850652

Paliwal, C., Ghosh, T., George, B., Pancha, I., Maurya, R., Chokshi, K., … Mishra, S. (2016). Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 15, 24–31. https://doi.org/10.1016/j.algal.2016.01.017

Peñarrieta, M., Alvarado, A., ?kessonb, B., & Bergenståhlc, B. (2005). Total antioxidant capacity in andean food species from Bolivia. Revista Boliviana de Química, 22(1), 89–93. Recuperado de http://www.scielo.org.bo/scielo.php?pid=S0250-54602005000100014&script=sci_arttext&tlng=es

Peñarrieta, M., Salluca, T., Tejeda, L., Alvarado, A., & Bergenståhl, B. (2011). Changes in phenolic antioxidants during chuño production (traditional Andean freeze and sun-dried potato). Journal of Food Composition and Analysis, 24(4–5), 580–587. https://doi.org/10.1016/j.jfca.2010.10.006

Puhakka, R., Valve, R., & Sinkkonen, A. (2018). Older consumers’ perceptions of functional foods and non-edible health-enhancing innovations. International Journal of Consumer Studies, 42(1), 111–119. https://doi.org/10.1111/ijcs.12400

Salas-Valerio, W., Solano-Cornejo, M., Zelada-Bazán, M., & Vidaurre-Ruiz, J. (2019). Three-dimensional modeling of heat transfer during freezing of suspended and in-contact-with-a-surface yellow potatoes and ullucus. Journal of Food Process Engineering, 42(6), 1–10. https://doi.org/10.1111/jfpe.13174

Sellappan, S., Akoh, C. C., & Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432–2438. https://doi.org/10.1021/jf011097r

Sreeramulu, D., & Raghunath, M. (2010). Antioxidant activity and phenolic content of roots, tubers and vegetables commonly consumed in India. Food Research International, 43(4), 1017–1020. https://doi.org/10.1016/j.foodres.2010.01.009

Svenson, J., Smallfield, B. M., Joyce, N. I., Sansom, C. E., & Perry, N. B. (2008). Betalains in red and yellow varieties of the andean tuber crop ulluco (Ullucus tuberosus). Journal of Agricultural and Food Chemistry, 56(17), 7730–7737. https://doi.org/10.1021/jf8012053

Tapia, M. (1990). Cultivos andinos subexplotados y su aporte a la alimentación. FAO.

Valcárcel-Yamani, B., Rondán-Sanabria, G. G., & Finardi-Filho, F. (2013). The physical, chemical and functional characterization of starches from andean tubers: Oca (Oxalis tuberosa molina), olluco (Ullucus tuberosus caldas) and mashua (Tropaeolum tuberosum ruiz & pavón). Brazilian Journal of Pharmaceutical Sciences, 49(3), 453–464. https://doi.org/10.1590/S1984-82502013000300007

Vera, N. G., Espino Manzano, S. O., & Hernandez, H. M. H. (2018). Use of Oxalis tuberosa in Gluten-free Baked Goods Manufacture. In Alternative and Replacement Foods (Vol. 17). https://doi.org/10.1016/B978-0-12-811446-9.00006-X

Werge, R. W. (1979). Potato processing in the central highlands of peru. Ecology of Food and Nutrition, 7(4), 229–234. https://doi.org/10.1080/03670244.1979.9990534

Zhu, F., & Cui, R. (2019). Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chemistry, 296, 116–122. https://doi.org/10.1016/j.foodchem.2019.05.192

Descargas

Publicado

2020-08-08

Cómo citar

Chuquilín Goicochea, R. C., Martínez Laurente, M. C., & Rodrigo-Chumbes, J. T. . (2020). Propiedades funcionales de productos tradicionales congelados y secados al sol de oca (Oxalis tuberosa Molina) y olluco (Ullucus tuberosus Caldas): Una revisión. PURIQ, 2(3), 363-387. https://doi.org/10.37073/puriq.2.3.100

Métricas alternativas