Vol. 2 No. 3 (2020): PURIQ (September-December)
Articles

Effect of Pyrolean acid on the germination of Sandia, Cocona and Cacao in the District of San Gabán, Carabaya

Edgar Pelinco Ruelas
National University of Juliaca
Bio
Néstor Fredy Quispe Salazar
National University of Juliaca
Mario Catacora Pinazo
National Institute of Agrarian Innovation

Published 2020-08-06

Keywords

  • Pyroleanic acid,
  • seed germination,
  • bio-oil,
  • wood vinegar

How to Cite

Pelinco Ruelas, E., Quispe Salazar, N. F., & Catacora Pinazo, M. (2020). Effect of Pyrolean acid on the germination of Sandia, Cocona and Cacao in the District of San Gabán, Carabaya. Puriq, 2(3), 233–246. https://doi.org/10.37073/puriq.2.3.105

Métricas alternativas

Abstract

For the present research work, the main objective was to evaluate the effect of pyrolenous acid and the optimal dose for the germination of watermelon, cocona and cacao seeds; the randomized complete design statistical model was used, the factors under study were: pyrolenous acid dose obtained from Bambú, Pisonay and Cético (1, 10, 100 ml) and seeds of the three mentioned species, we worked with 9 treatments and a control plus three repetitions, the variables were: germination percentage and dose. The results indicate significant effects of pyrolenous acid on germination, of cocona seeds, cacao with 96.70%, and 100%, however, there were negative effects for watermelon seeds. Likewise, the application of pyrolenous acid at a dose of 10 ml had the best results in the germination of cacao and cocona seeds with 97% and 90%. In conclusion, the application of pyrolenous acid at doses of 10 ml improved the germination process of the Cocona and Cacao seeds, however, at a high dose of 100 ml it inhibits germination, finally, the 1 ml dose does not show positive effects respectively.

Downloads

Download data is not yet available.

References

  1. Alvarado, M.; Solano, J. (2002). Medios de sustrato en la producción de viveros y plantas. Costa Rica: Proyecto VIFINEX
  2. Arvelo, M.; González, D.; Maroto, S.; Montoya, P. (2017). Manual técnico del cultivo de cacao: Instituto Interamericano de Cooperación para la Agricultura (IICA), 143 p.
  3. Balcazar, T. 2011. El Cultivo De La Cocona. Editorial CONCYTEC. 123 p. Lima-Perú. Recuperado: http://repositorio.iiap.gob.pe/handle/IIAP/357
  4. Batista, J.; Ré-Poppi, N.; & Raposo, J. (2012). Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. Journal of the Brazilian Chemical Society, 23(4), 610–617. https://doi.org/10.1590/s0103-50532012000400005
  5. Catacora, M.; Quispe, I.; Julian, E.; Zanabria, R.; Roque, M.; Zevallos, P. (2019). Caracterización de los componentes químicos del ácido piroleñoso obtenido de 3 especies forestales, con fines agrícolas en San Gabán, Puno (PERÚ). Ceprosimad, 7(2), 06-16. Recuperado a partir de https://journal.ceprosimad.com/index.php/ceprosimad/article/view/83
  6. Chuaboom, W.; Ponghirantanchoke, N.; Athinuwat, D. (2016). Application of Wood Vinegar for Fungal Disease Controls in Paddy Rice. Applied Environmental Research, 38(3), 77 - 85.
  7. Carbajal, T.; Balcázar de Ruiz. (2002). Cultivo de Cocona. IIAP. Tingo María – Perú. 54 pp.
  8. De Lima, G.; Mendes, C.; de Marchi, G.; Vicari, T.; Cestari, M.; Gomes, M.; Leme, D. (2019). The evaluation of the potential ecotoxicity of pyroligneous acid obtained from fast pyrolysis. Ecotoxicology and Environmental Safety, 180(May), 616–623. https://doi.org/10.1016/j.ecoenv.2019.05.058
  9. Enríquez, G.; Paredes, A. (1989). El cultivo de Cacao. Editorial Universidad Estatal. EUNED. Tercera edición. San José. Costa Rica. 63 pp.
  10. FAO (organización de las Naciones Unidas). (2005). Nota de análisis sectorial agricultura y desarrollo rural. Roma: Corporación andina de fomento (CAF).
  11. Gordon, R.; Camargo, I. (2015). Selección de estadísticos para la estimación de la precisión experimental en ensayos de Maíz. Agron. Mesoam., 26(1), 55-63.
  12. Grewal, A.; Abbey, L.; Gunupuru, L. (2018). Production, prospects and potential application of pyroligneous acid in agriculture. Journal of Analytical and Applied Pyrolysis. 135, 152–159. https://doi.org/10.1016/j.jaap.2018.09.008
  13. INIA, Instituto Nacional de Investigación y Extensión Agraria. (2006). Cultivo de Cocona. San gabán. Primera edición. 13 p. Lima-Perú
  14. International Seed Testing Association (2016). Reglas internacionales para el análisis de las semillas. Uruguay
  15. Kodata, M.; Hirano, T.; Imizu, K. (2002). Pyroligneous Acid Improves In Vitro Rooting of Japanese Pear Cultivars. HortScience, 37(1), 194 - 195.
  16. Lei, M.; Liu, B.; Wang, X. (2018). Effect of adding wood vinegar on cucumber (Cucumis sativus L.) seed germination. Earth and Environmental Science, 128. doi:10.1088/1755-1315/128/1/012186
  17. Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; Li, F. (2019). Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. Soils and Sediments. doi: doi: 10.1007/s11368-019-02365-9
  18. Martín, L.; Rivera, J.; Castizo, R. (2018). Cambio climático y desarrollo sostenible en Iberoamérica. La rábida, Huelva.
  19. Martínez, J.; Virgen, J.; Peña, M.; Santiago, A. (2010). Índice de velocidad de emergencia en líneas de maíz. Ciencias Agrícolas, 1(3), 289-304.
  20. Mohan, D.; Pittman, C.; Bricka, M.; Smith, F.; Yancey, B.; Mohammad, J.; Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1), 57–73. https://doi.org/10.1016/j.jcis.2007.01.020
  21. Mu, J.; Uehara, T.; Furuno, T. (2004). Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: Composition of moso bamboo vinegar at different collection temperature and its effects. Journal of Wood Science. 50. 470-476. 10.1007/s10086-003-0586-y.
  22. Ming, L.; Bingjie, Liu.; Xiao, W. (2018). Effect of adding wood vinegar on cucumber (Cucumis sativus L) seed germination IOP Conf. Series: Earth and Environmental Science 128 doi :10.1088/1755-1315/128/1/012186
  23. Mu, J.; Uechara, T.; Furuno, T. (2004). Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants II: composition of moso bamboo vinegar at different collectiontemperature and its effects. J. Wood Sci, 50(5), 470-476.
  24. Oliva, M.; Vacalla, F.; Pérez, D.; Tucto, A. (2014). Manual de vivero forestal para producción de plantones de especies forestales nativas: experiencia en Molinopampa. Amazonas-Peru. Chachapoyas: SERFOR.
  25. Pan, X., Zhang, Y., Wang, X., & Liu, G. (2017). Effect of adding biochar with wood vinegar on the growth of cucumber. Earth and Environmental Science, 61, 1-4. doi:10.1088/1755-1315/61/1/012149
  26. Santos, L.; Juan, J.; Picornell, M.; Tarjuelo, J. (2010). El riego y sus tecnologías. España: CREA-UCLM.
  27. Santos, A., Cristaldo, P., Araújo, A., Melo, C., Lima, A., Santana, E., Bacci, L. (2018). Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicology and Environmental Safety.
  28. Suarez, D.; Marina, L. 2010. Biología y germinación de semillas. Reserchgate, 13-24.
  29. Saray, R.; Delgado de la Flor, F.; Julio, A. (2000). Hortalizas datos básico. Lima: Programa de Horatlizas UNAM.
  30. Theapparat, Y., Chandumpai, A., & Faroongsarng, D. (2018). Physicochemistry and Utilization of Wood Vinegar from Carbonization of Tropical Biomass Waste. Tropical Forests, 163-183. doi:http://dx.doi.org/10.5772/intechopen.77380.
  31. Vaccari F P, Maienza A, Miglietta F, Baronti S, Di Lonnardo S, Giagnoni L and Valboa G. (2015) Agr. Ecosyst. Environ. 207 163-170 https://doi.org/10.1016/j.agee.2015.04.015
  32. Zheng H, Wang Z Y, Deng X, Herbert S. and Xing B S (2013). Impactos de agregar biochar en la retención de nitrógeno y la biodisponibilidad en el suelo agrícola. Geoderma 260 32-39 https://doi.org/10.1016/j.geoderma.2013.04.018
  33. Zulkarami, B.; Ashrafuzzaman, M.; Mohamad, O.; Mohd, I. (2011). Effect of pyroligneous acid on growth, yield and quality improvement of rockmelon in soilless culture. Australian Journal of Crop Science, 5(12), 1508-1514.