Vol. 3 No. 1 (2021): PURIQ (January-April)
Articles

Ethanol production by digestion of lignocellulosic waste due to agricultural soil fungi of Lima city

Leslie Giovana Delgado Olivares
Federico Villarreal National University
Bio
Ramses Salas Asencios
Federico Villarreal National University
Bio

Published 2021-01-04

Keywords

  • Cellulase activity,
  • bioethanol,
  • Penicillium,
  • Fusarium,
  • Aspergillus

How to Cite

Delgado Olivares, L. G., & Salas Asencios, R. (2021). Ethanol production by digestion of lignocellulosic waste due to agricultural soil fungi of Lima city. Puriq, 3(1), 165–174. https://doi.org/10.37073/puriq.3.1.148

Métricas alternativas

Abstract

Strains of fungi with celulase activity were isolated of agricultural soil samples.  Isolated fungi belonged to the genera Aspergillus, Penicillium and Fusarium, showing different yields of etanol production.  Fungi with the highest cellulase activity were mainly of the genus Penicillium and Fusarium, allowing a higher yield in terms of etanol production from the fermentation of the digestion product with baker’s yeast.

Downloads

Download data is not yet available.

References

  1. Branco, R.H.R., Serafim, L.S. y Xavier, A.M.R.B. (2019). Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock. Fermentation, 5, 4; doi:10.3390/fermentation5010004.
  2. Castro-Martínez C., Beltrán-Arredondo L.I. y Ortiz-Ojeda J.C. (2012). Producción de biodiesel y bioetanol: ¿una alternativa sustentable a la crisis energética?. Ra Ximhai, 8(3), 93 – 100.
  3. Chandel, A.K. y Singh, O.V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol, 89, 1289–1303. doi: 10.1007/s00253-010-3057-6
  4. Cragg S.M., Beckham G.T., Bruce N.C., Bugg T.D.H., Distel D.L., Dupree P., Etxabe A.G., Goodell B.S., Jellison J., McGeehan J.E., McQueen-Mason S.J., Schnorr K., Walton P.H., Watts J.E.M. y Zimmer M. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 29, 108 – 119. http://dx.doi.org/10.1016/j.cbpa.2015.10.018.
  5. Doolotkeldieva T.D. y Bobusheva S.T. (2011). Screening of Wild-Type Fungal Isolates for Cellulolytic Activity. Microbiology Insights, 4, 1 – 10. https://journals.sagepub.com/doi/pdf/10.4137/MBI.S6418.
  6. Drissen R.E.T.R.H., Maas W., Tramper, J., y Beeftink, H.H. (2009). Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation. Biocatalysis and Biotransformation, 27(1), 27 – 35. https://doi.org/10.1080/10242420802564358.
  7. Ekundayo, T. y Juwon, A. (2015). Isolation and Identification of Cellulytic Fungi from Agrowastes and Sawmill Soils. British Biotechnology Journal, 7, 147 - 159. DOI: 10.9734/BBJ/2015/17575.
  8. Guzmán A.M., Zambrano D.E., Rondón A.J., Laurencio M., Pérez M., León R. y Rivera R. (2014). Aislamiento, selección y caracterización de hongos celulásicos a partir de muestras de suelo en Manabí-Ecuador. Revista de la Facultad de Ciencias Agrarias de la Universidad de Cuyo, 46(2), 177 – 189. http://www.redalyc.org/articulo.oa?id=382837658004.
  9. Hussain A., Shrivastav A., Jain S.K., Baghel R.K., Rani S. y Agrawal M.K. (2012). Cellulolytic Enzymatic Activity of Soft Rot Filamentous Fungi Paecilomyces variotii. Advances in Bioresearch, 3(3), 10 – 17.
  10. INS y MINSA. (2007). Manual de procedimientos y técnicas de laboratorio para la identificación de los principales hongos oportunistas causantes de micosis humana. Nº 44. Lima, Perú.
  11. Kim, S. y Dale, B.E. (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26, 361 – 375. https://doi.org/10.1016/j.biombioe.2003.08.002.
  12. Kurambhatti, C.V., Kumar, D., Rausch, K.D., Tumbleson, M.E. y Singh, V. (2018). Ethanol Production from Corn Fiber Separated after Liquefaction in the Dry Grind Process. Energies, 11, 2921; doi:10.3390/en11112921.
  13. Matsakas, L. y Christakopoulos, P. (2015). Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site. Sustainability, 7, 1446-1458. DOI:10.3390/su7021446.
  14. Mamma, D., Kourtoglou, E., y Christakopoulos, P. (2008). Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresource Technology, 99, 2373–2383. DOI:10.1016/j.biortech.2007.05.018.
  15. Mikán, J. y Castellanos, E. (2004). Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas. Revista Colombiana de Biotecnología, 6 (1), 58-71.
  16. Nandana, G., Sridevi, A. y Narasimha, G. (2013). Screening and production of cellulase by fungal culture isolated from soil contaminated with cattle dung. Biotechnology India (BTAIJ), 7(3), 117 – 120.
  17. Oliveira, L.A., Porto, L.F.A., y Tambourgi, E.B. (2006). Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from diff erent agricultural wastes. Bioresource Technology, 97(6), 862-867. DOI:10.1016/j.biortech.2005.04.017.
  18. Ortiz, M. y Uribe, D. (2010). Determinación de la actividad lignocelulásica en sustrato natural de aislamientos fúngicos obtenidos de sabanas de pastoreo y de bosque secundario de sabana inundable tropical. Ciencias del Suelo, 28 (2), 169-180.
  19. Priyanka P., Yuvraj C, Farha S. y Aranganathan V. (2017). Isolation of cellulose degrading fungi from soil and optimization for cellulase production using Carboxy Methyl Cellulose. International Journal Of Life Science & Pharma Research, 7(1), L-56 – L-60. http://www.ijlpr.com/admin/php/uploads/312_pdf.pdf.
  20. Procop, G.W., Church, D.L., Hall, G.S., Janda, W.M., Koneman, E.W., Schreckenberger, P.C., y Woods, G.L. (2017). Koneman. Diagnóstico microbiológico, 7ª edición. Buenos Aires Editorial Médica Panamericana.
  21. Rodríguez-Guerra, A, Soria, C.A., Barnes, C.W., Ordóñez, M.E. y Salazar, A. (2012). Identificación y evaluación de algunos hongos con actividad celulásica aislados en Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 33(1), 65. DOI: 10.26807/remcb.v33i1-2.224
  22. Sánchez A.M., Gutiérrez Morales A.I., Muñoz Hernández J.A. y Rivera Barrero C.A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulósicos. Revista Tumbaga, 1(5), 61 - 91.
  23. Sari S.L.A. Setyaningsih R. y Wibowo N.F.A. (2017). Isolation and screening of cellulolytic fungi from Salacca zalacca leaf litter. Biodiversitas, 18(3), 1282 – 1288. DOI:10.13057/biodiv/d180355.
  24. Sato Y., Fukuda Y., Zhou Y. y Mikami S. (2010). Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. Journal of Bioscience and Bioengineering, 110(6), 679 – 683. Doi: 10.1016/j.jbiosc.2010.07.015.
  25. Sivaramanan, S. (2014). Isolation of Cellulolytic Fungi and their Degradation on Cellulosic Agricultural Wastes. Journal of Academia and Industrial Research (JAIR), 2(8), 458 – 463. DOI:10.13140/2.1.3633.4080.
  26. Sociedad Española de Microbiología. (2014). Clave dicotómica para la identificación de hongos aislados sistemáticamente en ambientes mediterráneos. Revista Semáforo, número 57. https://www.semicrobiologia.org/storage/secciones/publicaciones/semaforo/57/articulos/30_Clave.pdf
  27. Vázquez-Montoya, E.L., Castro-Ochoa, L.D., Maldonado-Mendoza, I.E., Luna-Suárez, S. y Castro-Martínez, C. (2020). Moringa straw as cellulase production inducer and cellulolytic fungi source. Rev. Argent. Microbiol., 52(1), 4 – 12. DOI: 10.1016/j.ram.2019.02.005.